If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+26x+146=0
a = 1; b = 26; c = +146;
Δ = b2-4ac
Δ = 262-4·1·146
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{23}}{2*1}=\frac{-26-2\sqrt{23}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{23}}{2*1}=\frac{-26+2\sqrt{23}}{2} $
| -9=-3+u/2 | | 7(7x-5)=-35-8x | | -7f^2+11f+9=4-3f | | 9x=15x+12 | | 7y-12=32+y | | X(0.5x-1)=0 | | (x-1.9)4=8 | | 5^5x+5=36 | | 3.6x0.003=0.0108 | | m+4/9-5/6=0 | | -3(x-3)=4-2x | | 19*x=100 | | (3x+10)(2x+15)=180 | | 0.7(2x+3)=2.3(x-3 | | 2x(3x+5)=2x-3 | | 2(x2-1)=5x | | 12y-7=113.y= | | 4+2x+5=5 | | 12^x=216 | | 8x-11+4x+39=90 | | 8x-11+4x+38=90 | | 8x-11+4x+39=180 | | 8x-11+4x+38=180 | | 12-5m/3-13m=1/2 | | -x+20x-8=0 | | -6(6+n)-4(7n-3)=48 | | g(4)=-20 | | -35=-5e | | x+9=2x-43 | | 10x+18=30 | | 2x-49=x+9 | | 4(6+4x=0 |